TABLE OF CONTENTS
1843S, 1843N RECTANGULAR BALERS

CONTENTS

INTRODUCTION

Introduction .. 1
Product Description .. 3
Market ... 4
Major Competitors .. 5

FEATURES AND BENEFITS

General .. 6
Baler Drives .. 7
Pickup ... 10
Pre-forming and Bale Chamber .. 12
Knotter .. 16
Mainframe ... 19
Engine and Accessories .. 21
Electrical and Hydraulics .. 22
Set-up and Pre-delivery .. 24
Optional Kits (Field Installed) .. 25

SPECIFICATIONS

1843S ... 28
1843N ... 32

COMPETITIVE COMPARISONS

1843S ... 36
INTRODUCTION

The Massey Ferguson Hesston Series 1843S and 1843N are high capacity, three twine balers designed for commercial hay producers.

The balers are designed for all forage crops, including alfalfa, grass hay, sudan grass, grass straw, and grain straw. The 1843S produces bales 15 inches high by 22 inches wide (380 x 560mm), and up to 52 inches (2700mm) in length. The 1843N produces a slightly larger bale, of 15.75 inches high, 22 inches wide (400 x 560mm), and up to 52 inches (2700mm) in length. Depending on the type of crop and moisture, bales can weigh up to 180 pounds.
The 1843S and 1843N baler was upgraded from the original Hesston 4690 three-twine baler in several areas.

Bale Chamber
- The 1843S bale chamber features a full 15 inch height to allow better utilization of truck-load space.
- Bale chamber cross members located directly behind the knotters, have been reinforced for longer life.
- The side tension rail pivots have been strengthen to tolerate higher bale density settings.
- The plunger top and bottom rails have improved heat-treatment, for longer life.

Pickup
- Windguard support brackets are repositioned for improved windguard pivot life.
- The 4.00 x 16 pneumatic gauge wheels to stand up better to rough ground conditions.
- More positive gauge wheel mounting – A series of holes instead of slots, to prevent the gauge wheel setting from slipping in rough conditions.
- Auger bearing size increased from 1 1/4” to 1 3/8” for longer life (1843S only).
- Cast iron pickup bearing flanges for HU serial number balers (1843S only).
- Pickup side material thickness increased from 1/8” to 3/16” for more durability.

Lighting
- The field lights are rubber-mounted, to tolerate rough conditions.
- The hazard lights sealing o-rings are UV protected, to reduce the cracking in high heat conditions.

Changes to Improve Bale Shape
- Revised stuffer finger configuration (1843S only)-The center fingers remain the same with two prongs. Both side fingers feature a single prong (as compared to a double prong on the Hesston 4690 and 1843N).
- Increased auger length (1843S only) direct more crop toward the center of the bale chamber, for a better-defined flake.
- Higher auger speed (1843S only) helps distribute the crop more evenly within the flake, for better consistency.
- Revised plunger face- The face extensions are shortened making the plunger face flatter, resulting less breaking up of the crop material. Crop is less likely to hang on the plunger, reducing the incidence of the flakes tying together.
- Revised top tension rails – The bottom of the top tension rails have been beveled to allow the bale shape to stabilize before it exits the chamber.
The main differences between the 1843S and the 1843N are listed in the chart below.

<table>
<thead>
<tr>
<th></th>
<th>Massey Ferguson 1843S</th>
<th>Massey Ferguson 1843N</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAKE</td>
<td>Massey Ferguson</td>
<td>Massey Ferguson</td>
</tr>
<tr>
<td>MODEL</td>
<td>1843S</td>
<td>1843N</td>
</tr>
<tr>
<td>BALE SIZE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height in (mm)</td>
<td>15 (380)</td>
<td>15.75 (400)</td>
</tr>
<tr>
<td>Width in (mm)</td>
<td>22 (560)</td>
<td>22 (560)</td>
</tr>
<tr>
<td>Length in (mm)</td>
<td>Up to 52 (1321)</td>
<td>Up to 52 (1321)</td>
</tr>
<tr>
<td>BALE CHAMBER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height in (mm)</td>
<td>13.97 (355)</td>
<td>14.72 (374)</td>
</tr>
<tr>
<td>Width in (mm)</td>
<td>22.05 (560)</td>
<td>22.05 (560)</td>
</tr>
<tr>
<td>PICKUP AUGERS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length in (mm)</td>
<td>33.54 (852)</td>
<td>27.6 (700)</td>
</tr>
<tr>
<td>Diameter in (mm)</td>
<td>13 (330)</td>
<td>13 (330)</td>
</tr>
<tr>
<td>Pitch in</td>
<td>14.17</td>
<td>14.17</td>
</tr>
<tr>
<td>Auger Shaft Diameter in (mm)</td>
<td>1.375 (35)</td>
<td>1.25 (32)</td>
</tr>
<tr>
<td>Speed rpm</td>
<td>278</td>
<td>212</td>
</tr>
<tr>
<td>STUFFER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of Teeth</td>
<td>6</td>
<td>8</td>
</tr>
</tbody>
</table>
MARKET

The traditional market for the 1843 balers is the commercial baling operator and large livestock operations, primarily located in the western part of North America. The balers are designed to provide this market with a bale size, weight, and density compatible with existing handling and transportation systems. This bale size is also very popular in the export hay markets.
FEATURES AND BENEFITS
1843S, 1843N RECTANGULAR BALERS

MAJOR COMPETITORS

Massey Ferguson1843
Freeman ..1390
GENERAL

Center-Line Design

The term "center-line" means the hay flows in a straight line from the pickup to the finished bale. Since the baler is not offset, the operator can straddle the windrow as is done when round baling or large square baling.

Crop flowing through the baler in a straight line reduces the amount of crop handling, minimizing leaf loss, makes bales that flake better and produces a more consistent weight and length package that is preferred when using mechanical collecting devices such as bale accumulators or stacking wagons.

Bale Size

The 1843S bale size is 15" by 22" (380 mm x 560 mm). The 1843N bale size is 15.75" by 22" (400 mm x 560 mm), and is adjustable up to 52" (1321 mm) long. The bale is sized to be compatible with existing handling and transportation systems. Bale weight can vary from 90 to 180 lb. (41 to 82 kg) at normal baling moisture, depending on bale length.
BALER DRIVES

Baler Clutch
The baler clutch engages and disengages the baler from the engine. The clutch engagement is remotely engaged electrically from the control box, located at the operators station, for convenient operation. The baler is powered by an Deutz four cylinder aircooled engine. There is a drive shaft between the engine and the baler clutch.

Flywheel
The flywheel is driven by two matched v-belts form the baler clutch. The flywheel helps the baler maintain momentum throughout the entire plunger stroke, providing smooth baler operation. The drive system is shearbolt protected at the flywheel. Smooth operation lessens the possibility of fatigue related baler failures, and increases operator comfort.

Gearbox
The hypoid gearbox is the heart of the baler drive system. The gearbox drives the plunger through crank arms on both the right and left side of the gearbox.
Stuffer Drive

The stuffer drive is located on the right side of the baler. The stuffer is chain driven, and shear bolt protected (Arrow). The stuffer is timed in relation to the plunger. The stuffer and knotter drives are both in the same area, for convenient service.
Knotter Drive

The knotter drive is located on the right side of the baler, next to the stuffer drive. The knotter and needles are chain driven. The knotter drive clutch is shear bolt protected (Arrow). The knotters and needles are timed in relation to the plunger. The knotter drive features a simple design that is easy to maintain adjustment.
PICKUP

Wide Low-Profile Pickup

The pickup is centrally positioned in front of the baler to evenly feed the pre-forming chamber, allowing the use of an extra-wide pickup. The operator is able to bale wider windrows or swaths without raking, which reduces crop leaf loss. The low profile reduces crop leaf loss.

Floating Windguard

The floating windguard holds the crop down on the pickup wrappers to ensure positive feeding in all crop conditions. The windguard is especially useful in light crops and windy conditions, ensuring a positive, uniform, continuous feeding of the windrow.

Slip and Overrunning Clutch

The pickup reel and centering augers are protected from damage by a slip and overrunning clutch. The slip clutch reduces damage and downtime to the baler, resulting in increased productivity.
Centering Augers

The pickup centering augers move the crop to the center of the pickup to be collected by the stuffer. The augers feed the crop smoothly, maintaining an even amount of crop on each side. This increases baling capacity in heavy crop or wide windrows and is the most important factor in the ability to bale uniformly dense bales from side to side (no banana shaped bales).

The 1843S and 1843N each have a different centering augers configuration.

1843S Baler Augers

The 1843S baler has the bale formation kit installed standard. The bale formation kit consists of longer stub augers operating faster than the pickup. The combination of longer augers and faster speed mixes the crop generating a higher quality flake. The flakes are better separated, so they won’t hang together (flake better) when the bale is fed. The two outside stuffer fingers are removed because of the longer augers.

1843N Baler Augers

The 1843N baler has shorter stub augers. With the shorter augers, the stuffer has all four front stuffer fingers installed. The more open throat design resulting in higher capacity when compared to the 1843S.
Hydraulic Pickup Lift

The hydraulic pickup lift is a standard feature. The pickup can be raised or lowered from the towing vehicle seat. The pickup can be easily raised for field washouts, crossing borders, or for moving from field to field.

Pickup Flotation

Pickup flotation is adjustable through a spring on the left side of the pickup. The flotation can be quickly set to match even the roughest field conditions for clean crop pickup. The flotation protects the pickup from damage, for reduced maintenance costs.

Gauge Wheels

The pickup comes standard with two gauge wheels, one on each side of the pickup. The gauge wheels help protect the pickup and the field from damage, for reduced maintenance costs and better crop re-growth.
As the plunger moves forward, uncovering the top of the pre-forming chute, the stuffer fingers start to push crop up the pre-forming chute. The rear stuffer fingers push the pre-formed flake, while the front fingers pull crop into the pre-forming chute.

With the plunger extended, (compressing the flake in the bale chamber), the stuffer fingers begin their cycle.

The crop is moved from the pickup directly into the pre-forming chamber. The crop continues in a straight line, assuring the leaves will be distributed evenly throughout the bale, and not lost on the ground. There the hay is pre-formed and pre-compressed into a flake before it enters the bale chamber, reducing the amount of compression the plunger has to exert.

As the plunger moves forward, uncovering the top of the pre-forming chute, the stuffer fingers start to push crop up the pre-forming chute. The rear stuffer fingers push the pre-formed flake, while the front fingers pull crop into the pre-forming chute.
As the plunger fully retracts, the rear stuffer fingers push the pre-formed flake into the bale chamber, while the front stuffer fingers charge the pre-forming chamber for the next cycle.

Since the same amount of crop is distributed to each side of the bale, “banana shaped” bales are virtually eliminated. Direct, straight crop feeding causes less crop disturbance, resulting in higher quality bales.

The plunger, timed to the stuffer, collects the crop, cuts and further compresses the flake into the bale, as the stuffer fingers return to start another cycle. Since the stuffer separates the flake from the incoming crop, the main job of the plunger knives is to trim the tails off the bottom of the flake, further reducing plunger loading. The pre-formed bale slice (flake) ensures uniform density.

These square shouldered, uniform bales handle easier and stack better, making transportation and storage more efficient.
Plunger Safety Stop

The plunger safety stop engages when the needles are in the bale chamber during a plunger stroke. The safety stop prevents the plunger from damaging the needles. The safety stop causes the flywheel shear bolt to break if the needles are in the bale chamber when they are not supposed to be there. This feature prevents costly and time consuming needle repairs, should a malfunction occur.

Short Plunger Stroke

The pre-formed flake concept allows the plunger to travel a shorter distance when forming a bale. The 21.9 inch stroke reduces wear on the plunger and plunger bearings by as much as 30% over competitive model balers.

High Speed Plunger

The plunger operates at 90 strokes per minute, providing high capacity bale production.

The plunger is mounted on 10 sealed ball bearing rollers. This insures smooth plunger operation and proper plunger to knife clearance.
Plunger Face

The plunger face is flat on the 1843S and 1843N balers. This profile helps keep the bale flakes separated. The plunger face plates in the Bale Formation Kit help revise the plunger face to this profile on the pre-2000 model year Hesston 4690 balers (B469-00760 and earlier).

Hydraulic Density Control

The hydraulic density control senses the resistance of the bales sliding through the bale chamber, and sets the bale tension accordingly. Hydraulic cylinders apply pressure to all four sides of the bale; both bale sides, top and bottom. The hydraulic tension maintains the bale weight through the whole baling cycle. Density can be controlled from the control box, for operator convenience. There is a gauge at the back of the baler, and one on the front shield, so it can be seen by the operator.

Bale Chute

The bale chute can be set up to quarter turn drop the bales, or to drop the bales with the twines on top.
KNOTTER

Heavy Duty Knotters

Designed for years of trouble free service, the knotters are capable handling heavy plastic twine with ease and reliability. The split frame knotter design reduces downtime and costly repairs during the baling season.

Knotter Trip Arm

The knotter trip arm works in conjunction with the bale meter wheel, making for a very positive bale length mechanism. This system maintains a consistent bale length up to 52 in. Consistent bale length makes handling and stacking the bales much easier.
Knotter Blower Fan

The knotters are equipped with a blower fan to prevent trash build-up. This increases knotter reliability and improves productivity.

Knotter Lube System

The knotter lube system automatically lubes 18 lube points on every tying cycle. The amount of lube is adjustable. The lube system has its own reservoir and oil filter. The reservoir holds 7 quarts (6.6 liters) of 15W-40 engine oil.

Twine Box

The twine box holds 12 balls of twine, so four balls can be connected to each knotter. This arrangement provides enough twine for a full day (or night) of operation without stopping.
Knotter Access Ladder

The knotters are accessed by a ladder built onto the left rear side of the baler.
MAINFRAME

In-Line Tongue Position

The in-line tongue allows the operator to straddle the windrow, and pull the baler directly behind the tractor or towing vehicle. The in-line position, is safer and easier for highway.

Offset Tongue Position

The baler’s self-contained design, along with the hydraulic tongue swing allow the tongue to be offset, while keeping the crop flow center-line. The offset tongue position allows the operator to run to the side of the windrow. This is necessary when the towing vehicle does not have sufficient ground clearance to straddle the windrow.

Tongue Swing Cylinder

The tongue swing cylinder allows the baler tongue to be swung out, allowing the baler to go from an in-line position to the offset position.
Ball Hitch

The baler comes standard with a 2 5/16” (58.7 mm) ball hitch. The ball hitch allows the baler to be hitched to a wide variety of towing vehicles. The hitch is adjustable to match various drawbar heights.

Flotation Tires

The baler is equipped with 14L x 16.5 - 12 ply flotation tires. Less soil compaction promotes faster growth of hay crops, maximizing crop performance.

High Ground Clearance

The raised location of the bale chamber on the center line design balers protects the needles from damage. When the needles are in the down or home position, they are still above the axle, and cannot be deflected or damaged from high centering the baler on rocks, rough ground conditions, or by crossing borders. The sheltered position of the needles reduces downtime caused by miss-tied bales or damaged needles, increasing productivity.
ENGINE AND ACCESSORIES

Four Cylinder Engine

The baler is powered by a Deutz F914 75 hp 4 cylinder air cooled engine, meeting tier 4 interim emissions requirements. The engine is balanced to provide smooth consistent power without vibration. It is mounted low and towards the front of the baler, for easy access for maintenance. All engine start, stop, and throttle settings are set from the control box.

Fuel Tank

The baler is features a large 29 gallon (109.8 liter) fuel tank with sufficient capacity to operate long days without refueling.
Control Box

The control box is placed in the tractor or towing vehicle and monitors all engine and baler functions.

Engine functions:
- Key switch to start and stop engine
- Fuel gauge

Baler functions:
- Baler tongue swing
- Hydraulic pickup lift
- Electric clutch to start the baler operation
- Bale flake counter
- Set bale density
- Turn on and off field lights
Control Box Warning Lights

The control box has several warning lights:

- Battery warning (Red)
- Engine oil pressure (Red)
- Engine head temperature (Red)
- Engine cooling fan (Green)
- Work lights indicator

Baler Lights

The baler is equipped with four work lights, flashing road lights, turn signals, and an SMV.

Self Contained Hydraulic System

The baler features self-contained hydraulic system with reservoir, pump, filter, and solenoid valves. The hydraulic reservoir holds 15 quarts (14 liters) of 15W-40 engine oil. The oil level check and the oil filter are easily accessed by opening a shield on the left side of the baler.
SET UP AND PRE-DELIVERY

Rectangular Balers

The 1843S and 1843N small rectangular balers are shipped mostly assembled. A pre-delivery checklist is included in the operator’s manual.

1843S, 1843N

Set Up Time - 1.0 Hr.

Pre-Delivery Time - 3.0 Hr.
OPTIONAL KITS (FIELD INSTALLED)

Clevis Hitch

The clevis hitch replaces the ball hitch on the baler. The clevis hitch is used on balers that will be primarily hooked to tractors.

Wholegoods Kit – MK40842

Estimated Installation Time – 0.5 Hr.

Tandem Wheel Kit

The tandem wheel kit is used on rough or corrugated fields for smoother baler operation. The kit supplies two 12.5L x 15 tires, and mounting brackets.

Wholegoods Kit – MK41222

Estimated Installation Time – 1.0 Hr.
Bale Formation Kit
(For Hesston 4690, 4690N Only)

The bale formation kit helps improve bale shape on 4690 balers. The kit includes two single stuffer fingers to replace double fingers, longer augers and bearings, sprockets and chains to speed up augers, and plunger face plates.

Kit – K41027
(available through parts)

Estimated Installation Time – 3.0 Hr.

Bale Width Reduction Kit

The bale width reduction kit consists of a plate added to each side of the bale chamber to reduce the bale width by 1/2” (13 mm). This kit is primarily used where bales are being fed into a bale press prior to being put into containers for export.

Kit – K40924
(available through parts)

Estimated Installation Time – 1.0 Hr.
Bale Height Reduction Kit
(For 1843N Only)

The bale height reduction kit reduces the bale height 3/4” (19 mm) from the standard bale height. This will make the bales the same height as the 4690s baler.

Service Kit – 700 150 767

Estimated Installation Time – 2.0 Hr.

Wire Harness Extension

An extension to the wiring harness is available through service parts. The cable is 118” (3.0 m) long. It can be used when towing the baler with a truck or jeep.

Service Kit – 700 715 149

Estimated Installation Time – 0.5 Hr.
SPECIFICATIONS

1843S RECTANGULAR BALER

MODEL

- 1843S Rectangular Baler

DIMENSIONS AND WEIGHTS

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Measurement</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length w/Bale Chute</td>
<td>285 (7239)</td>
<td></td>
</tr>
<tr>
<td>Width (Overall)</td>
<td>104 (2642)</td>
<td></td>
</tr>
<tr>
<td>Tread Width</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard Tires</td>
<td>80 (2032)</td>
<td></td>
</tr>
<tr>
<td>Tandem Wheels (Optional)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outside Tires</td>
<td>85 (2159)</td>
<td></td>
</tr>
<tr>
<td>Inside Tires</td>
<td>50 (1270)</td>
<td></td>
</tr>
<tr>
<td>Height w/Shielding</td>
<td>69 (1753)</td>
<td></td>
</tr>
<tr>
<td>Baler Weight, Approximate</td>
<td>8000 (3632)</td>
<td></td>
</tr>
<tr>
<td>Tongue Weight</td>
<td></td>
<td></td>
</tr>
<tr>
<td>In-line</td>
<td>1030 (468)</td>
<td></td>
</tr>
<tr>
<td>Offset</td>
<td>1130 (513)</td>
<td></td>
</tr>
</tbody>
</table>

TIRES

<table>
<thead>
<tr>
<th>Size</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flotation</td>
<td>14L – 16.1, 12 Ply</td>
</tr>
<tr>
<td>Tandem (Field Installed Option)</td>
<td>12.5L – 15, 8 Ply</td>
</tr>
<tr>
<td>Pickup Gauge Wheels</td>
<td>4.00 x 16 Pneumatic w/Inner Tube</td>
</tr>
</tbody>
</table>

BALE

<table>
<thead>
<tr>
<th>Size</th>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bale Chamber</td>
<td>15 x 22 (380 x 560)</td>
</tr>
<tr>
<td>Width</td>
<td>22.04 (560)</td>
</tr>
<tr>
<td>Height</td>
<td>13.97 (355)</td>
</tr>
<tr>
<td>Bale Length</td>
<td>12 to 52 (305 to 1321)</td>
</tr>
<tr>
<td>Weight</td>
<td>Up to 180 (82)</td>
</tr>
<tr>
<td>Density Control</td>
<td>Hydraulically Controlled Density Rails</td>
</tr>
</tbody>
</table>

MAIN DRIVE

<table>
<thead>
<tr>
<th>Component</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drive Shaft</td>
<td>Constant Velocity Joint</td>
</tr>
<tr>
<td>Rear</td>
<td>Single U-joint</td>
</tr>
<tr>
<td>Baler Clutch</td>
<td>Electric</td>
</tr>
<tr>
<td>Baler Drive Belts</td>
<td>Matched Set of 2</td>
</tr>
<tr>
<td>Gearbox</td>
<td>Double Reduction Hypoid and Spur Gears w/Tapered Roller Bearings</td>
</tr>
<tr>
<td>Protection</td>
<td>Flywheel Shearbolt</td>
</tr>
</tbody>
</table>
SPECIFICATIONS
1843S RECTANGULAR BALER

PICKUP
Drive ... Drive Shaft and Roller Chain

Width
 Tine to Tine in (mm) .. 70.2 (1783)
 Inside Panel to Panel in (mm) .. 77.5 (1969)
 Outside End Panel in (mm) ... 91.2 (2317)
 Overall w/Gauge Wheels in (mm) .. 108.5 (2756)

No. of Tine Bars ... 4

No. and Type of Tines ... 56, Double Tines

Tine Spacing in (mm) ... 2.6 (66)

Tine Control ... Dual Camtracks

Protection ... Slip and Overrunning Clutch

Augers
 Length in (mm) ... 33.54 (852)
 Shaft Size in (mm) .. 1.38 (34.9)
 Diameter in (mm) ... 13 (330)
 Flighting Pitch in (mm) ... 14.17 (360)
 Speed rpm .. 278

Gauge Wheels ... Two (One per Side)

Pickup Lift ... Hydraulic Cylinder

FEEDING SYSTEM
Drive ... No. 80 Roller Chain

Protection ... Shearbolt

Stuffer Crank ... 6 Tines

Stuffer Opening sq in (sq cm) ... 185 (1194)

PLUNGER
Speed Strokes/min ... 90

Length of Stroke in (mm) .. 21.9 (556)

Mounting ... 10 Sealed Ball Bearing Rollers

TYING MECHANISM
Knotters ... 3 Heavy Duty Twine Tie

Drive ... No. 50 Roller Chain

Protection ... Shearbolt

Type of Twine ... High Quality Split Film Polypropylene

Twine Container Capacity ... 12 Balls
ENGINE
Model .. Deutz Air Cooled Diesel D914L04, Tier 4I
Horsepower hp (kW) ... 74.8 (55)
High Idle rpm .. 2300
Displacement cu in (L) ... 263 (4.3)
Fuel ... No. 2 Diesel
Fuel Tank Capacity Gal, U.S. (L) ... 29 (109.8)

ELECTRICAL SYSTEM
System Voltage .. 12
Battery
Capacity .. 12 Volt, 450 Amp
Minimum Cranking Capacity @ 0°F ..
Type ... SAE J537, Group 24 or 27, Top Post
Alternator
Manufacturer ... Robert Bosch
Output, Amperes .. 55

HYDRAULIC SYSTEM
Type .. Self-Contained
Pump Displacement gpm (L/min) ... 3.6 (13.6)
System Relief Pressure psi (kPa) ... 1700 (11,721)

BALER CONTROL CONSOLE
Engine monitoring lights and alarm, Fuel gauge, Bale flake counter
Remote control for:
♦ Engine Start and Stop
♦ Throttle
♦ Hydraulic Tongue Swing
♦ Hydraulic Pickup Lift
♦ Hydraulic Bale Density
♦ Machine Operation – Electric Clutch
♦ Working Lamps

BALER MOUNTED MONITORING SYSTEMS
Hourmeter .. Engine Compartment
Rear Pressure Gauge .. Mounted on Bale Density Control Valve
Selector Valve ... Mounted on Bale Density Control Valve
(Used to release pressure on bale density rails)
Five Digit Bale Counter ... Rear of Knotters
LUBRICATION

Gearbox
Capacity qt, U.S. (L)... 8.0 (7.7)
Lubricant .. SAE EP 85W 140 Gear Oil

Engine Oil
Capacity, With Filter Change qt, U.S. (L).. 12.6 (12.0)
Lubricant .. SAE 15W 40, API CE, CDII/CF-4

Hydraulic Reservoir
Capacity qt, U.S. (L).. 15.0 (14.0)
Lubricant .. 15W 40 Engine Oil

Knotter Lubrication System Reservoir
Capacity qt, U.S. (L).. 7.0 (6.6)
Lubricant .. 15W 40 Engine Oil

TOWING VEHICLE REQUIREMENTS

Weight, Minimum lb (kg)... 5700 (2588)
Electrical... 12 Volt DC with ASAE 7 – Pin Connector for Warning Lights

OPTIONAL KITS (Field Installed)

Clevis Hitch
Tandem Wheel, 12.5L - 15

(Specifications and design are subject to change at any time without notice and without liability.)
SPECIFICATIONS
1843N RECTANGULAR BALER

MODEL .. 1843N Rectangular Baler

DIMENSIONS AND WEIGHTS

Length,
 w/Bale Chute in (mm) .. 285 (7239)
Width (Overall) in (mm) .. 104 (2642)
Tread Width
 Standard Tires in (mm) .. 80 (2032)
 Tandem Wheels (Optional)
 Outside Tires in (mm) .. 85 (2159)
 Inside Tires in (mm) .. 50 (1270)
Height w/Shielding in (mm) .. 69 (1753)
Baler Weight, Approximate lb (kg) 8000 (3632)
Tongue Weight
 In-line lb (kg) ... 1030 (468)
 Offset lb (kg) ... 1130 (513)

TIRES

Size
 Flotation .. 14L – 16.1, 12 Ply
 Tandem (Field Installed Option) 12.5L – 15, 8 Ply
 Pickup Gauge Wheels .. 4.00 x 16 Pneumatic w/Inner Tube

BALE

Size in (mm) .. 15.75 x 22 (400 x 560)
Bale Chamber
 Width .. 22.04 (560)
 Height .. 14.72 (374)
Bale Length in (mm) ... 12 to 52 (305 to 1321)
Weight lb (kg) .. Up to 180 (82)
Density Control ... Hydraulically Controlled Density Rails

MAIN DRIVE

Drive Shaft
 Front ... Constant Velocity Joint
 Rear .. Single U-joint
Baler Clutch ... Electric
Baler Drive Belts ... Matched Set of 2
Gearbox .. Double Reduction Hypoid and Spur Gears w/Tapered Roller Bearings
Protection ... Flywheel Shearbolt
SPECIFICATIONS
1843N RECTANGULAR BALER

PICKUP
Drive ... Drive Shaft and Roller Chain

Width
 Tine to Tine in (mm) .. 70.2 (1783)
 Inside Panel to Panel in (mm) ... 77.5 (1969)
 Outside End Panel in (mm) ... 91.2 (2317)
 Overall w/Gauge Wheels in (mm) .. 108.5 (2756)

No. of Tine Bars ... 4
No. and Type of Tines .. 56, Double Tines
Tine Spacing in (mm) ... 2.6 (66)
Tine Control .. Dual Camtracks
Protection .. Slip and Overrunning Clutch

Augers
 Length in (mm) ... 27.6 (700)
 Shaft Size in (mm) ... 1.25 (31.8)
 Diameter in (mm) ... 13 (330)
 Flighting Pitch in (mm) ... 14.17 (360)
 Speed rpm .. 212

Gauge Wheels .. Two (One per Side)
Pickup Lift ... Hydraulic Cylinder

FEEDING SYSTEM
Drive ... No. 80 Roller Chain
Stuffer Crank .. 8 Tines
Stuffer Opening sq in (sq cm) ... 185 (1194)
Protection .. Shearbolt

PLUNGER
 Speed Strokes/min .. 90
 Length of Stroke in (mm) .. 21.9 (556)
 Mounting .. 10 Sealed Ball Bearing Rollers

TYING MECHANISM
Knotters .. 3 Heavy Duty Twine Tie
Drive .. No. 50 roller Chain
Protection ... Shearbolt
Twine Container Capacity ... 12 Balls
Type of Twine .. High Quality Split Film Polypropylene
ENGINE
Model ... Deutz Air Cooled Diesel D914L04 Tier 4I
Horsepower hp (kW) ... 74.8 (55)
High Idle rpm.. 2300
Displacement cu in (L)... 263 (4.3)
Fuel .. No. 2 Diesel
Fuel Tank Capacity Gal, U.S. (L).. 29 (109.8)

ELECTRICAL SYSTEM
System Voltage ... 12
Battery
 Capacity... 12 Volt, 450 Amp
 Minimum Cranking Capacity @ 0° F
 Type... SAE J537, Group 24 or 27, Top Post
Alternator
 Manufacturer... Robert Bosch
 Output, Amperes... 55

HYDRAULIC SYSTEM
Type ... Self-Contained
Pump Displacement gpm (L/min).. 3.6 (13.6)
System Relief Pressure psi (kPa)... 1700 (11,721)

BALER CONTROL CONSOLE
Engine monitoring lights and alarm, Fuel gauge, Bale flake counter
Remote control for:
♦ Engine Start and Stop
♦ Throttle
♦ Hydraulic Tongue Swing
♦ Hydraulic Pickup Lift
♦ Hydraulic Bale Density
♦ Machine Operation – Electric Clutch
♦ Working Lamps
♦ Hazard and Tail Lamp

BALER MOUNTED MONITORING SYSTEMS
Hourmeter .. Engine Compartment
Rear Pressure Gauge .. Mounted on Bale Density Control Valve
Selector Valve ... Mounted on Bale Density Control Valve
 (Used to release pressure on bale density rails)
Five Digit Bale Counter .. Rear of Knotters
LUBRICATION

Gearbox
- Capacity qt, U.S. (L): 8.0 (7.7)
- Lubricant: SAE EP 85W 140 Gear Oil

Engine Oil
- Capacity, With Filter Change qt, U.S. (L): 12.6 (12.0)
- Lubricant: SAE 15W 40, API CE, CDII/CF-4

Hydraulic Reservoir
- Capacity qt, U.S. (L): 15.0 (14.0)
- Lubricant: 15W 40 Engine Oil

Knotter Lubrication System Reservoir
- Capacity qt, U.S. (L): 7.0 (6.6)
- Lubricant: 15W 40 Engine Oil

TOWING VEHICLE REQUIREMENTS

- Weight, Minimum lb (kg): 5700 (2588)
- Electrical: 12 Volt DC with ASAE 7-Pin Connector for Warning Lights

OPTIONAL KITS (Field Installed)

- Clevis Hitch
- Tandem Wheel, 12.5L – 15
- Bale Formation Kit

(Specifications and design are subject to change at any time without notice and without liability.)
COMPETITIVE COMPARISONS
1843S RECTANGULAR BALER

<table>
<thead>
<tr>
<th>MAKE MODEL</th>
<th>DIMENSIONS & WEIGHT</th>
<th>BALE SIZE & WEIGHT</th>
<th>MAIN DRIVE</th>
<th>PICKUP WIDTH</th>
<th>FEEDING SYSTEM</th>
<th>PLUNGER</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAKE MODEL</td>
</tr>
<tr>
<td>MAKE MODEL</td>
</tr>
<tr>
<td>MAKE MODEL</td>
</tr>
<tr>
<td>MAKE MODEL</td>
</tr>
<tr>
<td>MAKE MODEL</td>
</tr>
<tr>
<td>MAKE MODEL</td>
</tr>
<tr>
<td>MAKE MODEL</td>
</tr>
<tr>
<td>MAKE MODEL</td>
</tr>
<tr>
<td>MAKE MODEL</td>
</tr>
<tr>
<td>MAKE MODEL</td>
</tr>
<tr>
<td>MAKE MODEL</td>
</tr>
<tr>
<td>MAKE MODEL</td>
</tr>
<tr>
<td>MAKE MODEL</td>
</tr>
<tr>
<td>MAKE MODEL</td>
</tr>
<tr>
<td>MAKE MODEL</td>
</tr>
<tr>
<td>MAKE MODEL</td>
</tr>
<tr>
<td>MAKE MODEL</td>
</tr>
<tr>
<td>MAKE MODEL</td>
</tr>
<tr>
<td>MAKE MODEL</td>
</tr>
<tr>
<td>MAKE MODEL</td>
</tr>
<tr>
<td>MAKE MODEL</td>
</tr>
<tr>
<td>MAKE MODEL</td>
</tr>
<tr>
<td>MAKE MODEL</td>
</tr>
<tr>
<td>MAKE MODEL</td>
</tr>
<tr>
<td>MAKE MODEL</td>
</tr>
<tr>
<td>MAKE MODEL</td>
</tr>
<tr>
<td>MAKE MODEL</td>
</tr>
<tr>
<td>MAKE MODEL</td>
</tr>
<tr>
<td>MAKE MODEL</td>
</tr>
<tr>
<td>MAKE MODEL</td>
</tr>
<tr>
<td>MAKE MODEL</td>
</tr>
<tr>
<td>MAKE MODEL</td>
</tr>
<tr>
<td>MAKE MODEL</td>
</tr>
<tr>
<td>MAKE MODEL</td>
</tr>
<tr>
<td>MAKE MODEL</td>
</tr>
<tr>
<td>MAKE MODEL</td>
</tr>
<tr>
<td>MAKE MODEL</td>
</tr>
<tr>
<td>MAKE MODEL</td>
</tr>
<tr>
<td>MAKE MODEL</td>
</tr>
<tr>
<td>MAKE MODEL</td>
</tr>
<tr>
<td>MAKE MODEL</td>
</tr>
<tr>
<td>MAKE MODEL</td>
</tr>
<tr>
<td>MAKE MODEL</td>
</tr>
<tr>
<td>MAKE MODEL</td>
</tr>
<tr>
<td>MAKE MODEL</td>
</tr>
<tr>
<td>MAKE MODEL</td>
</tr>
<tr>
<td>MAKE MODEL</td>
</tr>
<tr>
<td>MAKE MODEL</td>
</tr>
<tr>
<td>MAKE MODEL</td>
</tr>
<tr>
<td>MAKE MODEL</td>
</tr>
<tr>
<td>MAKE MODEL</td>
</tr>
<tr>
<td>MAKE MODEL</td>
</tr>
<tr>
<td>MAKE MODEL</td>
</tr>
<tr>
<td>MAKE MODEL</td>
</tr>
<tr>
<td>MAKE MODEL</td>
</tr>
<tr>
<td>MAKE MODEL</td>
</tr>
<tr>
<td>MAKE MODEL</td>
</tr>
<tr>
<td>MAKE MODEL</td>
</tr>
<tr>
<td>MAKE MODEL</td>
</tr>
<tr>
<td>MAKE MODEL</td>
</tr>
<tr>
<td>MAKE MODEL</td>
</tr>
<tr>
<td>MAKE MODEL</td>
</tr>
<tr>
<td>MAKE MODEL</td>
</tr>
<tr>
<td>MAKE MODEL</td>
</tr>
<tr>
<td>MAKE MODEL</td>
</tr>
<tr>
<td>MAKE MODEL</td>
</tr>
<tr>
<td>MAKE MODEL</td>
<td>MAKE MODEL</td>
<td>MAKE MODEL</td>
<td>MAKE MODEL</td>
<td>MAKE MODEL</td>
<td>MADE MODEL</td>
<td>MAKE MODEL</td>
</tr>
<tr>
<td>MAKE MODEL</td>
</tr>
<tr>
<td>MAKE MODEL</td>
</tr>
<tr>
<td>MAKE MODEL</td>
</tr>
<tr>
<td>MAKE MODEL</td>
</tr>
<tr>
<td>MAKE MODEL</td>
</tr>
<tr>
<td>MAKE MODEL</td>
</tr>
<tr>
<td>MAKE MODEL</td>
</tr>
<tr>
<td>MAKE MODEL</td>
</tr>
<tr>
<td>MAKE MODEL</td>
</tr>
<tr>
<td>MAKE MODEL</td>
</tr>
<tr>
<td>MAKE MODEL</td>
</tr>
<tr>
<td>MAKE MODEL</td>
</tr>
<tr>
<td>MAKE MODEL</td>
</tr>
<tr>
<td>MAKE MODEL</td>
</tr>
<tr>
<td>MAKE MODEL</td>
</tr>
<tr>
<td>MAKE MODEL</td>
</tr>
<tr>
<td>MAKE MODEL</td>
</tr>
<tr>
<td>MAKE MODEL</td>
</tr>
<tr>
<td>MAKE MODEL</td>
</tr>
<tr>
<td>MAKE MODEL</td>
</tr>
<tr>
<td>MAKE MODEL</td>
</tr>
<tr>
<td>MAKE MODEL</td>
</tr>
<tr>
<td>MAKE MODEL</td>
</tr>
<tr>
<td>MAKE MODEL</td>
</tr>
<tr>
<td>MAKE MODEL</td>
</tr>
<tr>
<td>MAKE MODEL</td>
</tr>
<tr>
<td>MAKE MODEL</td>
</tr>
<tr>
<td>MAKE MODEL</td>
</tr>
<tr>
<td>MAKE MODEL</td>
</tr>
</tbody>
</table>
| MAKE MODEL | MAKE MODEL | MAKE Model | MAKE MODEL | MAKE MODEL | MAKE MODEL | MAKE Mode
COMPETITIVE COMPARISONS
1843S RECTANGULAR BALER

<table>
<thead>
<tr>
<th>MAKE</th>
<th>MODEL</th>
<th>MASSEY FERGUSON 1843S</th>
<th>FREEMAN 1390</th>
</tr>
</thead>
<tbody>
<tr>
<td>TYING SYSTEM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of Knotters</td>
<td>Drive</td>
<td>3 Heavy Duty Twine Tie No. 50 Chain</td>
<td>3 Heavy Duty Knotters INA</td>
</tr>
<tr>
<td>Twine Capacity (# of Balls)</td>
<td>12</td>
<td>High Quality Split Film Poly</td>
<td>INA</td>
</tr>
<tr>
<td>Type of Twine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DRIVE</td>
<td>Twine Capacity (No of Balls)</td>
<td>12</td>
<td>INA</td>
</tr>
<tr>
<td>Type of Twine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGINE</td>
<td>Model</td>
<td>Deutz Air Cooled Diesel Tier 41 D914L04</td>
<td>Deutz 4 Cyl. Inline</td>
</tr>
<tr>
<td>Horsepower hp (kW)</td>
<td></td>
<td>75 (55)</td>
<td>67 (49)</td>
</tr>
<tr>
<td>High Idle rpm</td>
<td></td>
<td>2300</td>
<td>INA</td>
</tr>
<tr>
<td>Displacement cu in (L)</td>
<td></td>
<td>230 (3.77)</td>
<td>INA</td>
</tr>
<tr>
<td>Fuel</td>
<td></td>
<td>No. 2 Diesel</td>
<td>Diesel</td>
</tr>
<tr>
<td>Fuel Tank Capacity Gal, U.S. (L)</td>
<td></td>
<td>29 (109.8)</td>
<td>30 (111.0)</td>
</tr>
<tr>
<td>HYDRAULIC SYSTEM</td>
<td>Type</td>
<td>Self-Contained</td>
<td>Self-Contained</td>
</tr>
<tr>
<td>Pump Displacement gpm (L/min)</td>
<td></td>
<td>3.6 (13.6)</td>
<td>INA</td>
</tr>
<tr>
<td>System Relief Pressure</td>
<td></td>
<td>1700 (11,721)</td>
<td>INA</td>
</tr>
<tr>
<td>ELECTRICAL SYSTEM</td>
<td>System Voltage</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Battery Capacity</td>
<td></td>
<td>12 Volt, 450 Amp</td>
<td>INA</td>
</tr>
<tr>
<td>Type</td>
<td></td>
<td>SAE J537, Group 24 or 27, Top Post</td>
<td>INA</td>
</tr>
<tr>
<td>Alternator</td>
<td>Manufacturer</td>
<td>Robert Bosch</td>
<td>INA</td>
</tr>
<tr>
<td>Output, Amperes</td>
<td></td>
<td>55</td>
<td>INA</td>
</tr>
<tr>
<td>TOWING VEHICLE</td>
<td>Weight, Minimum lb (kg)</td>
<td>5700 (2588)</td>
<td>INA</td>
</tr>
<tr>
<td>OPTIONAL KITS</td>
<td></td>
<td>Clevis Hitch</td>
<td>Ball and Clevis Type Hitch</td>
</tr>
<tr>
<td>(Field Installed)</td>
<td></td>
<td>Tandem Wheel, 12.5L-15</td>
<td></td>
</tr>
</tbody>
</table>

Every attempt has been made to insure accuracy, however AGCO Corporation assumes no responsibility for authenticity of data. Data presented is obtained from various sources, including manufacturers publications.